Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Main subject
Language
Document Type
Year range
1.
Data Brief ; 43: 108386, 2022 Aug.
Article in English | MEDLINE | ID: covidwho-1894961

ABSTRACT

Long-read sequencing (LRS) approaches shed new light on the complexity of viral (Kakuk et al., 2021 [1]; Boldogkoi et al., 2019 [2]; Depledge et a., 2019 [3]), bacterial (Yan et al., 2018 [4]) and eukaryotic (Tilgner et al., 2014 [5]) transcriptomes. Emerging RNA viruses are zoonotic (Woolhouse et al., 2016 [6]) and create public health problems, e.g. influenza pandemic caused by H1N1 virus in (Fraser et al., 2009 [7]), as well as the current SARS-CoV-2 pandemic (Kim et al., 2020 [8]). In this study, we carried out nanopore sequencing for generating transcriptomic data valuable for structural and kinetic profiling of six important human pathogen RNA viruses, the H1N1 subtype of Influenza A virus (IVA), the Zika virus (ZIKV), the West Nile virus (WNV), the Crimean-Congo hemorrhagic fever virus (CCHFV), the Coxsackievirus [group B serotype 5 (CVB5)] and the Vesicular stomatitis Indiana virus (VSIV), and the response of host cells upon viral infection. The raw sequencing data were filtered during basecalling and only high quality reads (Qscore ≥ 7) were mapped to the appropriate viral and host genomes. Length distribution of sequencing reads were assessed and statistics of data were plotted by the ReadStat.4 python script. The datasets can be used to profile the transcriptomic landscape of RNA viruses, provide information for novel gene annotations, can serve as resource for studying the virus-host interactions, and for the analysis of RNA base modifications. These datasets can be used to compare the different sequencing techniques, library preparation approaches, bioinformatics pipelines, and to analyze the RNA profiles of viruses with small RNA genomes.

2.
World J Gastroenterol ; 27(23): 3208-3222, 2021 Jun 21.
Article in English | MEDLINE | ID: covidwho-1282665

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) recently emerged as a highly virulent respiratory pathogen that is known as the causative agent of coronavirus disease 2019 (COVID-19). Diarrhea is a common early symptom in a significant proportion of patients with SARS-CoV-2 infection. SARS-CoV-2 can infect and replicate in esophageal cells and enterocytes, leading to direct damage to the intestinal epithelium. The infection decreases the level of angiotensin-converting enzyme 2 receptors, thereby altering the composition of the gut microbiota. SARS-CoV-2 elicits a cytokine storm, which contributes to gastrointestinal inflammation. The direct cytopathic effects of SARS-CoV-2, gut dysbiosis, and aberrant immune response result in increased intestinal permeability, which may exacerbate existing symptoms and worsen the prognosis. By exploring the elements of pathogenesis, several therapeutic options have emerged for the treatment of COVID-19 patients, such as biologics and biotherapeutic agents. However, the presence of SARS-CoV-2 in the feces may facilitate the spread of COVID-19 through fecal-oral transmission and contaminate the environment. Thus gastrointestinal SARS-CoV-2 infection has important epidemiological significance. The development of new therapeutic and preventive options is necessary to treat and restrict the spread of this severe and widespread infection more effectively. Therefore, we summarize the key elements involved in the pathogenesis and the epidemiology of COVID-19-associated diarrhea.


Subject(s)
COVID-19 , Diarrhea , Dysbiosis , Gastrointestinal Tract , Humans , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL